en
Books
Hemant Mehta

Mastering Python Scientific Computing

A complete guide for Python programmers to master scientific computing using Python APIs and tools
About This BookThe basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered.Most of the Python APIs and tools used in scientific computing are discussed in detailThe concepts are discussed with suitable example programsWho This Book Is ForIf you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming.
What You Will LearnFundamentals and components of scientific computingScientific computing data managementPerforming numerical computing using NumPy and SciPyConcepts and programming for symbolic computing using SymPyUsing the plotting library matplotlib for data visualizationData analysis and visualization using Pandas, matplotlib, and IPythonPerforming parallel and high performance computingReal-life case studies and best practices of scientific computingIn DetailIn today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing.
At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python.
The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs.
Style and approachThis book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.
354 tiskane stranice
Godina izdanja
2015
Jeste li već pročitali? Kakvo je vaše mišljenje?
👍👎

Na policama za knjige

fb2epub
Povucite i ispustite datoteke (ne više od 5 odjednom)